3.150 \(\int \frac{a+b x^4}{c+d x^4} \, dx\)

Optimal. Leaf size=223 \[ \frac{(b c-a d) \log \left (-\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \log \left (\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}+\frac{(b c-a d) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}+\frac{b x}{d} \]

[Out]

(b*x)/d + ((b*c - a*d)*ArcTan[1 - (Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(5/4)) - ((b*c - a*d)*Arc
Tan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(5/4)) + ((b*c - a*d)*Log[Sqrt[c] - Sqrt[2]*c^(1/4)
*d^(1/4)*x + Sqrt[d]*x^2])/(4*Sqrt[2]*c^(3/4)*d^(5/4)) - ((b*c - a*d)*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*x
+ Sqrt[d]*x^2])/(4*Sqrt[2]*c^(3/4)*d^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.151368, antiderivative size = 223, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.412, Rules used = {388, 211, 1165, 628, 1162, 617, 204} \[ \frac{(b c-a d) \log \left (-\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \log \left (\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}+\frac{(b c-a d) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}+\frac{b x}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^4)/(c + d*x^4),x]

[Out]

(b*x)/d + ((b*c - a*d)*ArcTan[1 - (Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(5/4)) - ((b*c - a*d)*Arc
Tan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)])/(2*Sqrt[2]*c^(3/4)*d^(5/4)) + ((b*c - a*d)*Log[Sqrt[c] - Sqrt[2]*c^(1/4)
*d^(1/4)*x + Sqrt[d]*x^2])/(4*Sqrt[2]*c^(3/4)*d^(5/4)) - ((b*c - a*d)*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*x
+ Sqrt[d]*x^2])/(4*Sqrt[2]*c^(3/4)*d^(5/4))

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{a+b x^4}{c+d x^4} \, dx &=\frac{b x}{d}-\frac{(b c-a d) \int \frac{1}{c+d x^4} \, dx}{d}\\ &=\frac{b x}{d}-\frac{(b c-a d) \int \frac{\sqrt{c}-\sqrt{d} x^2}{c+d x^4} \, dx}{2 \sqrt{c} d}-\frac{(b c-a d) \int \frac{\sqrt{c}+\sqrt{d} x^2}{c+d x^4} \, dx}{2 \sqrt{c} d}\\ &=\frac{b x}{d}-\frac{(b c-a d) \int \frac{1}{\frac{\sqrt{c}}{\sqrt{d}}-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{d}}+x^2} \, dx}{4 \sqrt{c} d^{3/2}}-\frac{(b c-a d) \int \frac{1}{\frac{\sqrt{c}}{\sqrt{d}}+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{d}}+x^2} \, dx}{4 \sqrt{c} d^{3/2}}+\frac{(b c-a d) \int \frac{\frac{\sqrt{2} \sqrt [4]{c}}{\sqrt [4]{d}}+2 x}{-\frac{\sqrt{c}}{\sqrt{d}}-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{d}}-x^2} \, dx}{4 \sqrt{2} c^{3/4} d^{5/4}}+\frac{(b c-a d) \int \frac{\frac{\sqrt{2} \sqrt [4]{c}}{\sqrt [4]{d}}-2 x}{-\frac{\sqrt{c}}{\sqrt{d}}+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{d}}-x^2} \, dx}{4 \sqrt{2} c^{3/4} d^{5/4}}\\ &=\frac{b x}{d}+\frac{(b c-a d) \log \left (\sqrt{c}-\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \log \left (\sqrt{c}+\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}+\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}\\ &=\frac{b x}{d}+\frac{(b c-a d) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt{2} c^{3/4} d^{5/4}}+\frac{(b c-a d) \log \left (\sqrt{c}-\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}-\frac{(b c-a d) \log \left (\sqrt{c}+\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{d} x^2\right )}{4 \sqrt{2} c^{3/4} d^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.129272, size = 196, normalized size = 0.88 \[ \frac{\sqrt{2} (b c-a d) \log \left (-\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )-\sqrt{2} (b c-a d) \log \left (\sqrt{2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt{c}+\sqrt{d} x^2\right )+2 \sqrt{2} (b c-a d) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )-2 \sqrt{2} (b c-a d) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )+8 b c^{3/4} \sqrt [4]{d} x}{8 c^{3/4} d^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^4)/(c + d*x^4),x]

[Out]

(8*b*c^(3/4)*d^(1/4)*x + 2*Sqrt[2]*(b*c - a*d)*ArcTan[1 - (Sqrt[2]*d^(1/4)*x)/c^(1/4)] - 2*Sqrt[2]*(b*c - a*d)
*ArcTan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)] + Sqrt[2]*(b*c - a*d)*Log[Sqrt[c] - Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[
d]*x^2] - Sqrt[2]*(b*c - a*d)*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[d]*x^2])/(8*c^(3/4)*d^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 266, normalized size = 1.2 \begin{align*}{\frac{bx}{d}}+{\frac{\sqrt{2}a}{4\,c}\sqrt [4]{{\frac{c}{d}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{c}{d}}}}}}+1 \right ) }-{\frac{\sqrt{2}b}{4\,d}\sqrt [4]{{\frac{c}{d}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{c}{d}}}}}}+1 \right ) }+{\frac{\sqrt{2}a}{4\,c}\sqrt [4]{{\frac{c}{d}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{c}{d}}}}}}-1 \right ) }-{\frac{\sqrt{2}b}{4\,d}\sqrt [4]{{\frac{c}{d}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{c}{d}}}}}}-1 \right ) }+{\frac{\sqrt{2}a}{8\,c}\sqrt [4]{{\frac{c}{d}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{c}{d}}}x\sqrt{2}+\sqrt{{\frac{c}{d}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{c}{d}}}x\sqrt{2}+\sqrt{{\frac{c}{d}}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}b}{8\,d}\sqrt [4]{{\frac{c}{d}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{c}{d}}}x\sqrt{2}+\sqrt{{\frac{c}{d}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{c}{d}}}x\sqrt{2}+\sqrt{{\frac{c}{d}}} \right ) ^{-1}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^4+a)/(d*x^4+c),x)

[Out]

b*x/d+1/4*(c/d)^(1/4)/c*2^(1/2)*arctan(2^(1/2)/(c/d)^(1/4)*x+1)*a-1/4/d*(c/d)^(1/4)*2^(1/2)*arctan(2^(1/2)/(c/
d)^(1/4)*x+1)*b+1/4*(c/d)^(1/4)/c*2^(1/2)*arctan(2^(1/2)/(c/d)^(1/4)*x-1)*a-1/4/d*(c/d)^(1/4)*2^(1/2)*arctan(2
^(1/2)/(c/d)^(1/4)*x-1)*b+1/8*(c/d)^(1/4)/c*2^(1/2)*ln((x^2+(c/d)^(1/4)*x*2^(1/2)+(c/d)^(1/2))/(x^2-(c/d)^(1/4
)*x*2^(1/2)+(c/d)^(1/2)))*a-1/8/d*(c/d)^(1/4)*2^(1/2)*ln((x^2+(c/d)^(1/4)*x*2^(1/2)+(c/d)^(1/2))/(x^2-(c/d)^(1
/4)*x*2^(1/2)+(c/d)^(1/2)))*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)/(d*x^4+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.36777, size = 1315, normalized size = 5.9 \begin{align*} \frac{4 \, d \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{1}{4}} \arctan \left (\frac{c^{2} d^{4} x \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{3}{4}} - c^{2} d^{4} \sqrt{\frac{c^{2} d^{2} \sqrt{-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}} +{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} x^{2}}{b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}}} \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{3}{4}}}{b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}}\right ) + d \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{1}{4}} \log \left (c d \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{1}{4}} -{\left (b c - a d\right )} x\right ) - d \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{1}{4}} \log \left (-c d \left (-\frac{b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac{1}{4}} -{\left (b c - a d\right )} x\right ) + 4 \, b x}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)/(d*x^4+c),x, algorithm="fricas")

[Out]

1/4*(4*d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4)*arctan((c^
2*d^4*x*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(3/4) - c^2*d^4*s
qrt((c^2*d^2*sqrt(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5)) + (b^2*c
^2 - 2*a*b*c*d + a^2*d^2)*x^2)/(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2
 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(3/4))/(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)) + d*(-(b^4*
c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4)*log(c*d*(-(b^4*c^4 - 4*a*b
^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) - d*(-(b^4*c^4 - 4*a
*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4)*log(-c*d*(-(b^4*c^4 - 4*a*b^3*c^3*d
 + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) + 4*b*x)/d

________________________________________________________________________________________

Sympy [A]  time = 0.589211, size = 87, normalized size = 0.39 \begin{align*} \frac{b x}{d} + \operatorname{RootSum}{\left (256 t^{4} c^{3} d^{5} + a^{4} d^{4} - 4 a^{3} b c d^{3} + 6 a^{2} b^{2} c^{2} d^{2} - 4 a b^{3} c^{3} d + b^{4} c^{4}, \left ( t \mapsto t \log{\left (\frac{4 t c d}{a d - b c} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**4+a)/(d*x**4+c),x)

[Out]

b*x/d + RootSum(256*_t**4*c**3*d**5 + a**4*d**4 - 4*a**3*b*c*d**3 + 6*a**2*b**2*c**2*d**2 - 4*a*b**3*c**3*d +
b**4*c**4, Lambda(_t, _t*log(4*_t*c*d/(a*d - b*c) + x)))

________________________________________________________________________________________

Giac [A]  time = 1.09969, size = 331, normalized size = 1.48 \begin{align*} \frac{b x}{d} - \frac{\sqrt{2}{\left (\left (c d^{3}\right )^{\frac{1}{4}} b c - \left (c d^{3}\right )^{\frac{1}{4}} a d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{c}{d}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{c}{d}\right )^{\frac{1}{4}}}\right )}{4 \, c d^{2}} - \frac{\sqrt{2}{\left (\left (c d^{3}\right )^{\frac{1}{4}} b c - \left (c d^{3}\right )^{\frac{1}{4}} a d\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{c}{d}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{c}{d}\right )^{\frac{1}{4}}}\right )}{4 \, c d^{2}} - \frac{\sqrt{2}{\left (\left (c d^{3}\right )^{\frac{1}{4}} b c - \left (c d^{3}\right )^{\frac{1}{4}} a d\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{c}{d}\right )^{\frac{1}{4}} + \sqrt{\frac{c}{d}}\right )}{8 \, c d^{2}} + \frac{\sqrt{2}{\left (\left (c d^{3}\right )^{\frac{1}{4}} b c - \left (c d^{3}\right )^{\frac{1}{4}} a d\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{c}{d}\right )^{\frac{1}{4}} + \sqrt{\frac{c}{d}}\right )}{8 \, c d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^4+a)/(d*x^4+c),x, algorithm="giac")

[Out]

b*x/d - 1/4*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(c/d)^(1/4))/(c/
d)^(1/4))/(c*d^2) - 1/4*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(c/d
)^(1/4))/(c/d)^(1/4))/(c*d^2) - 1/8*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*log(x^2 + sqrt(2)*x*(c/d)^
(1/4) + sqrt(c/d))/(c*d^2) + 1/8*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*log(x^2 - sqrt(2)*x*(c/d)^(1/
4) + sqrt(c/d))/(c*d^2)